Machine Learning for Data-Driven Decisions (MLD3)

We are a part of the AI Lab within the Division of Computer Science and Engineering. We work at the interface of artificial intelligence (AI), machine learning (ML), and healthcare.

Welcome to the Machine Learning for Data-Driven Decisions Group at the University of Michigan!

Our current research portfolio focuses on major public health problems – including infectious diseases, Alzheimer’s disease, and diabetes, respiratory failure, among others. We develop and state-of-the-art AI and machine learning methods to analyze large health datasets. Our work spans several aspects of AI including time-series analysis, reinforcement learning, computer vision, causal inference, and human-computer interaction. We aim to develop the computational methods needed to help organize, process, and transform data into actionable knowledge with the ultimate goal of improving health.

You can contact the group by emailing Dr. Jenna Wiens at wiensj@umich.edu.

AI and Clinical Practice with Jenna Wiens

Dr. Jenna Wiens • JAMA 2024

AI for Clinical Diagnostic Decision Making: Can Explanations be a Backstop Against Biased AI? | MiCHAMP Seminar Series

Sarah Jabbour • MiCHAMP 2024

Disparate Censorship & Undertesting: A Source of Label Bias in Clinical Machine Learning

Trenton Chang • MLHC 2022

PhD student perspectives in CSE: Sarah Jabbour

Sarah Jabbour • 2023

From Diagnosis to Treatment – Augmenting Clinical Decision Making with Artificial Intelligence • Temerty Speaker Series

Dr. Jenna Wiens • May 11, 2021

Reinforcement Learning with Set-Valued Policies • PathCheck Global Health Innovators Seminar

Shengpu Tang • August 12, 2021

Model Selection for Offline Reinforcement Learning: Practical Considerations for Healthcare Settings | MLHC 2021

Shengpu Tang

Mind the Performance Gap: Examining Dataset Shift During Prospective Validation | MLHC 2021

Erkin Otles

Deep Learning Applied to Chest X-Rays: Exploiting and Preventing Shortcuts | MLHC 2020

Sarah Jabbour

Deep Reinforcement Learning for Closed-Loop Blood Glucose Control | MLHC 2020

Ian Fox

Clinician-in-the-loop RL with Set-Valued Policies | ICML 2020

Shengpu Tang | More details on icml.cc

Deep Residual Time-Series Forecasting: Application to Blood Glucose Prediction

Presented at 2020 KDH Blood Glucose Level Prediction Challenge

MCURES

a COVID predictive model developed specifically for the Michigan Medicine population: the Michigan COVID-19 Utilization and Risk Evaluation System, or MCURES.

Friday Night AI: AI and COVID-19

Erkin Otles speaks about M-CURES, a machine learning model developed by people from our lab. M-CURES can help clinicians tell which COVID-19 patients are most likely to deteriorate.

How can machine learning impact healthcare?

Prof. Jenna Wiens uses machine learning to make sense of the immense amount of patient data generated by modern hospitals. This can help alleviate physician shortages, physician burnout, and the prevalence of medical errors.

Stanford Medicine Big Data | Precision Health 2018

Dr. Jenna Wiens